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(eq 3). This may suggest silylene species are involved in the
polymerization of p-quinones, similar to the polymerization of
stable germylenes with quinones.> However, the silylene mech-
anism cannot be applied to cyclic disilanes. Further studies are

awaited to propose the mechanism.
O o] PACI,(PEty)y [*N
1a + ‘ o —berzirs %{O,SIMQQ (3)
120°C, 24 h

4 (6.6 equiv) 5 (46%)

Since aromatic rings and Si—O bonds are thermally stable, the
polymers obtained herein are expected to possess high heat re-
sistance. In fact, thermogravimetric analyses (10 °C/min raising
rate, 50 mL/min He stream) showed that the temperatures at
5% and 10% weight loss (s and 7o) are 400 and 485 °C for 3c,
380 and 480 °C for 3d (soluble part), 250 and 400 °C for 3e, and
390 and 410 °C for 3f, respectively.

Supplementary Material Available: Physical, spectral, and
analytical data of 3a—f and 5 (2 pages). Ordering information
is given on any current masthead page.
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We recently reported an efficient synthesis of the cationic
(n*-allyl)rhenium complex CsH;(CO),Re(n*-CH,CHCH,)*PF{”
by hydride abstraction from the rhenium-propene complex
C;H;(CO),Re(CH,==CHCH,;) with Ph;C*PF,". The resulting
cationic (7°-allyl)rhenium complex reacted with carbon nucleo-
philes to produce elaborated rhenium-alkene complexes.! We
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have begun to explore the extension of this hydride abstraction
process to rhenium-alkyne complexes. Here we report the syn-
thesis of a cationic (n*-propargyl)rhenium complex by hydride
abstraction from a rhenium-alkyne complex and its reactions with
nucleophiles at the central carbon of the propargyl unit to produce
metallacyclobutene complexes.
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The reaction of CsMes(CO),Re(THF)? with a 5-fold excess
of 2-butyne in THF at room temperature for 12 h gave an 85%
yield of CsMes(CO),Re(CH,C=CCH,) (1), which was isolated
as a yellow solid after column chromatography (silica gel, 3:1
hexane/Et,0).
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Hydride abstraction from the rhenium-2-butyne complex 1
produced the -propargyl complex CsMes(CO),Re(n*-CH,C=
CCH,)*PF;” (2). Reaction of Ph;C*PF,” (145 mg, 0.371 mmol)
with 1 (160 mg, 0.371 mmol) in 10 mL of CH,Cl, at room
temperature for 1 h produced a dark brown solution. The solution
was concentrated to ~5 mL, and diethyl ether was added. The
resulting precipitate was filtered and washed with diethyl ether
(3 X 10 mL) to give the pure cationic (n*-propargyl)rhenium
complex CsMes(CO),Re(n’-CH,C=CCH,)*PF," (2) (185 mg,
87%) as a pale brown solid.* The 'H NMR spectrum of 2 in
CD,Cl, exhibited a downfield-shifted Cp* signal at § 2.11, a
methyl resonance at § 2.58 (t, J = 2.7 Hz), and two doublets of
quartets at 6 4.38 and 3.32, which were assigned to the inequivalent
propargyl hydrogens coupled to each other (Jger, = 10.1 Hz) and
to the methyl group (°J = 2.7 Hz). In the coupled *C NMR
spectrum of 2, two singlets at § 76.6 and 56.7 were assigned to
the quarternary propargyl carbons and a triplet (/ = 170.0 Hz)
at 6 29.0 was assigned to the terminal propargyl CH,. The
propargyl carbon chemical shifts of 2 were similar to those pre-
viously reported for n*-propargyl complexes.* In the IR spectrum
of 2, two strong CO bands were observed at 1974 and 1904 cm*'.

n’-Propargyl complexes are rare. Werner® reported the first
n’-propargyl complex, (Me;P),Os(’-PhC=CC=CHPh)*PF".
Related Ru,5” W 2 and Fe? complexes which also have a ==CHR
group attached to the propargyl terminus have been reported. The
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500 MHz) § 4.38 (dq, J = 10.1, 2.7 Hz, ReCHH), 3.32 (dq, J = 10.1, 2.7
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first unsubstituted n°-propargyl complex, C;Mes(CO),Mo(n3-
CH,C=CH)*BF,", was prepared by Krivykh'® by photolysis of
CsMegMo(CO); and propargyl alcohol in the presence of HBF,.
The preparation of (n*-propargyl)rhenium complex 2 constitutes
the first synthesis of an n’-propargyl complex by hydride ab-
straction from an alkyne complex. The structure and bonding
of n’-propargyl complexes are often discussed in terms of #3-
propargyl and n’-allenyl resonance structures. The large Joy =
170 Hz coupling of the propargyl CH, unit of 2 is indicative of
the importance of the n*-allenyl resonance structure.

The cationic (n’-propargyl)rhenium complex CsMes-
(CO),Re(7’-CH,C=CCH,;)*PF;" (2) reacted with a variety of
soft nucleophiles to produce stable rhenacyclobutene complexes.
Exclusive addition of nucleophiles to the central carbon of the
n’-propargyl complex 2 was observed. For example, when 2 (50
mg, 0.087 mmol) was treated with excess PMe; (10 equiv) in
CH,Cl,, a white precipitate formed gradually over 30 min at room
temperature. Solvent was evaporated, and the resulting solid was
washed several times with diethyl ether to give the white phos-
phine-substituted = rhenacyclobutene = complex [CsMe;-

(CO)ZReCHZC(PMe3)='CCH3]+PF6' (3) (41 mg, 72%).""
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The structure of rhenacyclobutene complex 3 was established
spectroscopically. The a-CH, group of metallacyclobutene com-
plexes gives rise to high-field resonances in the 'H and '3C NMR

spectra;'? for example, the a-CH, group of mer-(PMe;);Ir-

(10) Krivykh, V. V,; Taits, E. S.; Petrovskii, P. V.; Struchkov, Y. T,;
Yanovskii, A. I. Mendeleev Commun. 1991, 103,
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(11) For CsMes(CO),ReCH,C(PMe;)=CCH;*PF¢- (3): 'H NMR
(acetone-dg, 200 MHz) § 2.36 (q, Juuy = Jpy = 2.3 Hz, CCHjy), 2.05 (s,
CsMes), 1.95 (d, Jpy = 13.9 Hz, PMe;), 1.45 (dqd, J = 11.5,2.3 Hz, Jpy =
0.7 Hz, ReCHH), 0.3 (dq, 7 = 11.5, 2.3 Hz, ReCHH); *C NMR (acetone-dg,
126 MHz) 6 213.5 (s, CO), 207.0 (s, CO), 157.7 (s, =CCHj;), 128.0 (d, Jpc
= 33.2 Hz, =CPMe;), 103.3 (s, CsMes), 24.8 (q, J = 130.3 Hz, =CCH,),
9.9 (q, J = 128.6 Hz, CsMes), 9.2 (qd, Joy = 132.7 Hz, Jpc = 53.0 Hz,
PMe,), -31.7 (t, J = 145.0 Hz, ReCH,); *'P{!H} NMR (acetone-ds, 202.5
MHz) & 3.3 (s, PMe;); IR (acetone) 1991 (s), 1915 (m) em™!. Anal. Caled
for C,sHyO5ReP,Fy: C, 35.02; H, 4.49; P, 9.51. Found: C, 35.31; H, 4.36;
P, 10.36.
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(Br)CH,C(Ar)==C(Ar) gives rise to resonances at 8 1.16 in the
'H NMR and & -18.0 in the 1*C NMR spectra.' In the 'H
NMR spectrum of 3, resonances at 4 0.3 (dq, Jger, = 11.5 Hz,
3J = 2.3 Hz) and 8 1.45 (dq, Jyer = 11.5 Hz, °J = 2.3 Hz) were
assigned to the inequivalent protons of the a-CH, unit of the
metallacyclobutene. In the 3C NMR spectrum of 3, an upfield
triplet at 6 -31.7 (t, Joy = 145.0 Hz) was assigned to the «-CH,
carbon of the metallacyclobutene and a doublet at 6 128.0 (t, Jep
= 33.2 Hz) was assigned to the central carbon of the metalla-
cyclobutene ring of 3.

Nucleophilic addition to the central propargyl carbon of
CsMes(CO),Re(n*-CH,C=CCH;)*PF,” (2) was also observed
with LIC=CCMe; and NaCH(CO,Et),. Reaction of 2 (50 mg,
0.087 mmol) with LiC=CC(CH3); (8 mg, 0.087 mmol) produced

the neutral rhenacyclobutene complex CsMes(CO),ReCH,C-

(C=CCMe,;)=CCH, (4)? as an orange-red liquid (29 mg, 47%
yield). Similarly, the reaction of 2 (30 mg, 0.052 mmol) with
NaCH(CO,Et), (10 mg, 0.052 mmol) gave the malonate-sub-

stituted rhenacyclobutene complex (CsMes(CO),ReCH,C-

[CH(CO,Et),]=CCH; (5)° as an orange red liquid in 55% yield.
These three rhenacyclobutene complexes are stable at room
temperature and show no tendency to ring-open to vinyl carbene
complexes.

While nucleophiles normally add to a terminal carbon of n’-allyl
complexes, nucleophilic addition to the central carbon of #*-allyl
complexes to produce metallacyclobutanes has also been ob-
served.!> The attack of nucleophiles at the central carbon of
n’-propargyl complex 2 to generate metallacyclobutenes observed
here may turn out to be the normal mode of reaction of #’-
propargyl complexes. Attack at the central carbon may relieve
some strain in the n’-propargyl complexes. Clearly, the reactivity
pattern of n’-propargyl complexes with nucleophiles needs to be
further investigated. Some of the eventual products obtained from
nucleophilic attack on CsMeg(CO),Mo(n*-CH,C=CH)*BF,” can
be explained by initial nucleophilic attack on the central carbon
of the n*-propargyl group.!® Similarly, the palladium-catalyzed
reactions of propargyl esters with organic nucleophiles can be
explained in terms of nucleophilic attack at the central carbon
of propargyl metal complexes.!*
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